

187/

Cluster de calcul CENTAURE

N. Moulin, Th. Louvancourt, J. Mancuso

Définition

- Le terme de cluster (ou grappe, en français) désigne un ensemble d'ordinateurs indépendants, appelés nœuds, tous interconnectés par un réseau dédié.
- On dispose ainsi d'une machine capable de traiter des problèmes de très grande taille, en utilisant la puissance cumulée de ses nœuds.
- Liste des plus « gros » clusters : https://www.top500.org/

Objectifs

- Effectuer de très gros calculs comportant typiquement plusieurs millions (milliards) d'inconnues.
- Effectuer de nombreux calculs séquentiels simultanés.

Petit historique...

- 1973 : La rotonde...*un centre de calcul*
- 2005 : Ferme de PC
- 2009 : Cluster Pegase (centre SMS) 30k€
- 2016 : Cluster Centaure (investissement EMSE : 80k€)

Petit historique...

- 1973 : La rotonde...*un centre de calcul*
- 2005 : Ferme de PC
- 2009 : Cluster Pegase (centre SMS) 30k€
- 2016 : Cluster Centaure (investissement EMSE

Petit historique...

- 1973 : La rotonde...*un centre de calcul*
- 2005 : Ferme de PC
- 2009 : Cluster Pegase (centre SMS) 30k€
- 2016 : Cluster Centaure (investissement EMSE

- 2005 :
- 2009 :
- 2016 :

Descriptif technique

Architecture globale

- 1 nœud maître ou frontale,
- 27 nœuds de calcul (404 cœurs de calcul),
- 1 réseau Ethernet Gigabit (administration)
- 1 réseau Infiniband (calcul)
- 250 Go de disque pour le système (RAID1)
- 10 To de disque dur pour les données (NFS),
- 200 Go \sim 1 To de disque (scratch) sur les nœuds.

Descriptif technique

Configuration des nœuds (rack1 – rack2 - rack3)

- Bi-processeurs Intel Xeon E5-2660 v3 (2,6GHz, 10C/20T, 25Mo de mémoire cache, Turbo)
- 64Go de Ram, 700 Go de scratch
- 1 réseau Infiniband / 1 réseau Ethernet Gigabit
- Bi-processeurs Intel Xeon X-5650 (2,6GHz, 6C, 12Mo de mémoire cache)
- 24Go de Ram, 250 Go de scratch
- 2 réseaux Ethernet Gigabit
- Bi-processeurs Intel Xeon E-5530 (2,4GHz, 4C, 8Mo de mémoire cache)
- 32Go de Ram, 150 Go de scratch
- 2 réseaux Ethernet Gigabit

→ http://services-numeriques.emse.fr/pole-modelisation-et-calcul-numerique/cluster-centaure

Charge du cluster

Ganglia : http://centaure/ganglia/

Descriptif technique

Architecture logicielle

- Distribution CentOS 7 64bits (équivalent RedHat, durée des dépôts...),
- Logiciels de monitoring du cluster : ganglia (http://centaure/ganglia/),
- Compilateurs C/C++/fortran (GNU et Intel),
- Debugger (gdb),
- Python,
- Librairies spécifiques pour le calcul parallèle : openmpi, PETSC, BLAS, Lapack...
- Logiciels de gestion de queue de calcul : SLURM

•

. . .

Descriptif technique

Logiciels scientifiques

- Zset/ZeBuLoN : calcul parallèle par éléments finis (Mines-ParisTech CdM, Onera, Safran, Mines-St-Etienne),
- CimLib : calcul parallèle par éléments finis (Mines-ParisTech Cemef),
- Comsol / Abaqus /Ansys : codes commerciaux de calcul par éléments finis,
- GMSH : logiciels de maillage,
- Matlab : calcul scientifique,
- CPLEX : optimisation,
- Outils de visualisation : Paraview, Visit...

→ Base de données : référencement des méthodes numériques / logiciels / codes de calculs https://portailmetier.emse.fr/ApplisWeb/modelisation/index.php

Comment accéder à Centaure

→ http://services-numeriques.emse.fr/pole-modelisation-et-calcul-numerique/cluster-centaure/acces-au-cluster-centaure

- Rappel : fonctionne sous **linux**.
- Nom de la machine sur le réseau : centaure
- Création de compte via **admin-centaure.emse.fr** (N. Moulin, Th. Louvancourt, J. Mancuso)
- Protocole de communication distant : ssh (pour Windows, utiliser putty ou Xming) ssh -X login centaure.emse.fr
- Transfert des données via les commandes scp ou rsync ou avec les logiciels filezilla ou winscp.
- Chaque utilisateur dispose d'un espace personnel (/export/home/login) mais le cluster n'est pas un espace de stockage de données

Modules et environnements

→ http://services-numeriques.emse.fr/pole-modelisation-et-calcul-numerique/cluster-centaure/modules-et-environnements

 La commande module permet de lister et d'utiliser simplement les logiciels, librairies ou utilitaires installés sur le cluster et ainsi configurer l'environnement des utilisateurs. Pour lister l'ensemble des modules existant, il faut utiliser la commande :

module avail

- Si un module vous semble manquant, n'hésitez pas à nous le faire savoir (admin-centaure@emse.fr).
- Pour charger un module, la commande est : module load abaqus/6-14.1
 Cette commande charge l'ensemble de l'environnement nécessaire à l'exécution du code Abaqus en version 6.14.
- Pour lister les modules chargés dans votre environnement : module list
- Pour décharger un module chargés dans votre terminal ou un script : module unload abaqus/6-14.1
- Cette commande va décharger l'ensemble des modules chargés par le module abaqus/6-14.1.
- Pour décharger tous les modules : module purge

Gestionnaire de travaux et soumission

→ http://services-numeriques.emse.fr/pole-modelisation-et-calcul-numerique/cluster-centaure/gestionnaire-de-travaux-et-soumission

- Les calculs sur le Cluster s'effectuent par l'intermédiaire d'un gestionnaire de travaux qui s'occupe de gérer la file d'attente et de lancer les calculs lorsque les ressources demandées sont disponibles.
- Le gestionnaire de travaux du Cluster est **SLURM** (Simple Linux Utility for Resource Management).

Soumission des travaux

 La soumission d'un job se fait avec la commande sbatch slurm.job

où slurm.job est un fichier de script dans lequel sont contenues des instructions pour SLURM ainsi que des instructions pour le lancement de votre programme.

• Cette commande retourne un numéro de job (JOBID)

Cluster de calcul - Janvier 2018

Utilisation du Cluster

Exemple de script SLURM

#!/bin/bash	echo Generating hostname list
#SBATCHjob-name=job-slurm-mpi	$\label{eq:computeror} COMPUTEHOSTLIST = $(\ scontrol \ show \ hostnames \ \$SLURM_JOB_NODELIST \ paste \ -d, \ -s \)$
#SBATCHmail-user=you@emse.fr	echo
#SBATCHmail-type=ALL	
#SBATCHnodes=2	echo Creating SCRATCH directories on nodes \$SLURM_JOB_NODELIST
#SBATCHntasks-per-node=2	SCRATCH=/scratch/\$USER-\$SLURM_JOB_ID
#SBATCHtime=01:00:00	srun -n\$SLURM_NNODES mkdir -m 770 -p \$SCRATCH exit \$?
	echo
module load mpi/openmpi-x86_64	echo Transferring files from frontend to compute nodes \$SLURM_JOB_NODELIST
	srun -n\$SLURM_NNODES cp -rvf \$SLURM_SUBMIT_DIR/* \$SCRATCH exit \$?
echo	echo
echo SLURM_NNODES: \$SLURM_NNODES	
echo SLURM_JOB_NODELIST: \$SLURM_JOB_NODELIST	echo Run -mpi program
echo SLURM_SUBMIT_DIR: \$SLURM_SUBMIT_DIR	mpirun -np 4 -npernode 2mca btl openib,self -host \$COMPUTEHOSTLIST \$SLURM_SUBMIT_DIR/mpi_hello_world-host
echo SLURM_SUBMIT_HOST: \$SLURM_SUBMIT_HOST	echo
echo SLURM_JOB_ID: \$SLURM_JOB_ID	
echo SLURM_JOB_NAME: \$SLURM_JOB_NAME	echo Transferring result files from compute nodes to frontend
echo SLURM_JOB_PARTITION: \$SLURM_JOB_PARTITION	srun -n\$SLURM_NNODES cp -rvf \$SCRATCH \$SLURM_SUBMIT_DIR exit \$?
echo SLURM_NTASKS: \$SLURM_NTASKS	echo
echo SLURM_TASKS_PER_NODE: \$SLURM_TASKS_PER_NODE	echo Deleting scratch
echo SLURM_NTASKS_PER_NODE: \$SLURM_NTASKS_PER_NODE	srun -n\$SLURM_NNODES rm -rvf \$SCRATCH exit 0
echo	echo

Cluster de calcul - Janvier 2018

pour simplifier...

 Un script spécifique a été développé pour générer automatiquement différents fichiers SLURM. Pour utiliser ce script, il faut charger d'abord le module correspondant :

module load tools/cluster-bin

- Le fichier .job est créé en exécutant la commande : cluster-create-slurm-script-01.sh suivie d'une option permettant de spécifier le modèle de fichier .job que vous voulez créer (fichier pour lancer Abaqus, Zset, ...).
- La commande cluster-create-slurm-script-01.sh -h permet de connaître les différents modèles disponibles.

Gestion des travaux

• La commande pour voir l'état des jobs est :

squeue

Cette commande ne montre que vos propres jobs !

- La commande pour arrêter un job est : scancel JOBID avec JOBID le numéro du job.
- La commande pour vérifier l'état des nœuds est : sinfo
- La version graphique : sview

Quelques recommandations...

- Ne pas hésiter à utiliser le cluster même pour des calculs modestes, cela décharge vos machines personnelles
- Utilisation raisonnée (jetons de licences, walltime...)!

Évolutions pour 2018...

- Augmentation/renouvellement de la puissance de calcul
- Machines dédiées au traitement des données à distance
- Mise en place de nouvelles queues de calcul

Merci de votre attention

